Advanced CODES/ROSS Usage and
Strategies

John Jenkins, ANL

g\ U.S. DEPARTMENT OF
.4, ENERGY

Outline

= Sample pain points of using an optimistic PDES in general, ROSS/CODES
specifically

= |dentify mitigation strategies
= Profit

.
Optimistic mode is annoying (state mutation)

Wall time
. Reverse
[Init } [Event A } [Event A }

int x = foo; X +=5; _
LP _ Which ones can we
e inty = bar; y = ev->baz; reverse successfully?

float z = 0.0; z += ev->fp;

void * m = NULL; free(m);

(m = malloc();)

.
Optimistic mode is annoying (state mutation)

Wall time
. Reverse
[Init } [Event A } [Event A }

int x = foo; X +=5; X-=5
LP inty = bar; y = ev->baz; ®
State —

float z = 0.0; Z += ev->fp; z-=ev->Tp; @& - fp not associative

void * m = NULL; free(m); ®

(m = malloc();)

Optimistic mode is annoying (state mutation)

Solution — save state for destructive operations
e destructive — FP operations, assignment, free, etc. (not even thinking about 10...)
e inthe eventis a good place to do this

e same event mem used for forward and reverse handler

Wall time
. Reverse
[Init } [Event A } [Event A }
int x = foo; X +=5; X-=5
LP inty = bar; ev->y =vy;
State — = ev->baz; = ev->V':
float z = 0.0; y ’ y = €ev->y;
. ev-z’ = z;
void * m = NULL;)
— Z += ev->fp; Z=ev->z
(m = malloc();) ev->m’ = m;
free(m): m = ev->m’

Everything good??

Optimistic mode is annoying (state mutation)

Problem — memory management (memory leaks in handling of m)

* need to keep around memory, but don’t know when to free it ®
Solution — CODES! (codes/rc-stack.h)

e use a stack data structure of pointers, garbage-collect based on GVT

Wall time
. Reverse
[Init } [Event A } [Event A }
int x = foo; X +=5; X-=5
LP inty = bar; ev->y’ =vy;
State = ev->baz; = ev->V;
— floatz=0.0; y ’ y = Evys
. ev-z’ = z;
void * m = NULL;)
Z += ev->fp; Z=ev->z
struct rc_stack *s; S’ =
rc_stack_create(&s); '
free{m); m=-eav->m’

(m = malloc();)
rc_stack_push(lp, m, s); m =rc_stack_pop(s);

Optimistic mode is still annoying (control flow)

actual (bug) state->foo = ev->bar; // garbage!

ROSS does not help you with this — can’t “type check” your messages

Optimistic mode is still annoying (control flow)

Solution: BYO consistent event structuring
* CODES can help (codes/lp-msg.h) struct event_b {
msg_header h;

intended .~ 7

- struct event_c {
msg_header h;

|5

actual (bug) assert(lp_type_magic == ev->h.magic);

struct msg_header {
tw_lpid src;
int event_type;
int magic; // magic number for recipient type

|5

\
Optimistic mode is still annoying (etc)

= Misc. recommendations
— Use bitfields for complicated conditionals (tw_bf, available with every event)
— Structure code to minimize mixing of state mutation and control flow based
on mutated state
— Very complicated control flows -- while (...) {if (...) { mutate_state } }

e refactor into multiple passes
e refactor into multiple events, using self-events for control flow

— Use OPTIMISTIC_DEBUG mode (--sync=4) to debug general reverse
computation behavior
e Runs forward until out of event memory, then reverses to the beginning

— Discuss on the mailing list (codes-ross-users@lists.mcs.anl.gov) ©

CODES/ROSS helpers for optimistic mode

rc_stack_* (codes/rc_stack.h)
— Lazy free list, allows for (user-driven) garbage collection based on GVT
" [p_io_* (codes/lp-io.h)
— Reverse computation aware file output for modest data sizes
— Similar to tw_printf, but uses MPI collectives at end of sim to combine output
— Ip-io support in model-net, local storage models (“category” function param)
= msg_header (codes/lp-msg.h)

— Commonly used event variables (src LP-ID, event type marker, lp type “magic”
number)

e CODES convention — magic = hash(lp_name);
= tw_output (ROSS/core/ross-extern.h)
— Optimistic-aware printf (prints on GVT)
= Optimistic debug mode (--sync=4) — use it!!!

10

Optimistic mode is hard!

= Optimistic concurrency comes at a price
— Reverse computation is programmer-provided
— Emergent multi-event effects may break model assumptions

Node 1 - 7) -
(100) \\ (1{}1) (.“ Y
How much?‘\\ B bps . v (1)
\ / *Jtake C bps
N / h
Link A i‘, ' —_ R -
Node 2 - -

wallclock time

From D. M. Nicol and X. Liu, “The dark side of risk (what your mother
never told you about Time Warp),” in, 11th Workshop on Parallel
and Distributed Simulation, 1997., Proceedings, 1997, pp. 188-195.

11

Optimistic mode is hard!

Model assumption: link LP doesn’t broadcast more available b/w than it can
allocate.
Message at simulation time 110 exists outside of reality!

— Node sends message thinking everything is OK
e Based on an “alternate timeline”

— Link receives message that is inconsistent with it’s view of the world
e But message appears legitimate!

— What if you freed request memory, shrunk your array size, done most anything in C?
Optimistic debug mode doesn’t help with this!

= -
Node 1 -~ 7 ~7
oy N (101y f 401) PG
L F e N
HDW mu(;h? \\ B bps‘r}' a.nli'msg . - - \\ (110)
| J P *Jtake C bps
hY / - \\
Link S - N -
- 7
7
(50 s

Itake B bps ,*
F g

Fi
/
I

Node 2 -

Y

wallclock time 12

Coping strategies

= Defensive programming!

— Aggressively check model assumptions for unexpected behavior
e Especially for complicated data structure handling

= Use the self-suspend technique

13

Self-suspend struct Ip_state {

void event(lp_state *s, ...) {
if (suspend) {// ignore event
// can see multiple events
// before rollback
suspend++;
return;

if (boroken_model_assumption) {
suspend =1;
// use codes/Ip-io.h for
// optimistic-aware output
lp_io_write(“error: ...”);
return;

int suspend; // initto O

void revent(lp_state *s, ...) {
// do nothing for ignored events,
// *until* we’re back at the originating event
if (suspend && --suspend) {
return;

}

// reverse event code

Idea - restrict the set of invalid states your LP sees

- don’t spend time crunching numbers that will

get rolled back anyways

14

Wrapping up

= For more tips:

— check out the CODES best practices document
(doc/codes-best-practices.tex — use the makefile to build the pdf)

— check out the ROSS wiki (https://github.com/carothersc/ROSS/wiki)
= Lots more | didn’t cover here:

— Encapsulation of message types between different LPs
— Sane, generic interfaces into LPs
— More coding-specific tips

e Modelnet, other codes models

e Configuration strategies

e Optimizing models

— Let’s discuss these during the hackathon!

15

